
Experts in fast data solutions

for demanding environments

Vaex, Arrow, Parquet

Focus on two things

• Open columnar data formats and tools:
• Arrow, Parquet and others

• Vaex

• How can we use these tools for similar applications to kdb+?
• similarities

• differences

• some interesting possibilities…

Columnar data formats

• Apache ORC

• Apache Parquet

• Apache Arrow

• and of course kdb+

• Advantages:
• Only read required columns

• Data adjacency for sequential
access (scans)

• O(1) (constant-time) random
access

• SIMD optimization and
vectorization-friendly

• Compression friendlyRows Columns

Columnar data formats

• Apache ORC

• Apache Parquet

• Apache Arrow

• and of course kdb+

• Advantages:
• Only read required columns

• Data adjacency for sequential
access (scans)

• O(1) (constant-time) random
access

• SIMD optimization and
vectorization-friendly

• Compression friendlyRows Columns

Apache Arrow

• Started in 2016 by Wes McKinney
• The “Arrow Columnar Format” includes a language-agnostic in-memory

data structure specification, metadata serialization, and a protocol for
serialization and generic data transport.
• Columns can be either fixed size or variable size
• Nulls are supported via validity maps, and variable width records via offset

calculations
• Built in types are what you might expect:

• int8/16/32/64
• float16/32/64
• time/date/timestamp/duration/interval
• Binary
• utf8
• dictionaries (enums)

Apache Arrow

• Arrays are defined by a few pieces of metadata and data:
• A logical data type.

• A sequence of buffers.

• A length as a 64-bit signed integer. Implementations are permitted to be
limited to 32-bit lengths, see more on this below.

• A null count as a 64-bit signed integer.

• An optional dictionary, for dictionary-encoded arrays.

Apache Arrow

For example a primitive array of int32s:

[1, null, 2, 4, 8]

Would look something like:

* Length: 5, Null count: 1

* Validity bitmap buffer:

|Byte 0 (validity bitmap) | Bytes 1-63 |

|-------------------------|-----------------------|

| 00011101 | 0 (padding) |

* Value Buffer:

|Bytes 0-3 | Bytes 4-7 | Bytes 8-11 | Bytes 12-15 | Bytes 16-19 | Bytes 20-63 |

|------------|-------------|-------------|-------------|-------------|-------------|

| 1 | unspecified | 2 | 4 | 8 | unspecified |

https://arrow.apache.org/docs/format/Columnar.html#

https://arrow.apache.org/docs/format/Columnar.html

Apache Arrow

For example a primitive array of int32s:

[1, null, 2, 4, 8]

Would look something like:

* Length: 5, Null count: 1

* Validity bitmap buffer:

|Byte 0 (validity bitmap) | Bytes 1-63 |

|-------------------------|-----------------------|

| 00011101 | 0 (padding) |

* Value Buffer:

|Bytes 0-3 | Bytes 4-7 | Bytes 8-11 | Bytes 12-15 | Bytes 16-19 | Bytes 20-63 |

|------------|-------------|-------------|-------------|-------------|-------------|

| 1 | unspecified | 2 | 4 | 8 | unspecified |

metadata/header

https://arrow.apache.org/docs/format/Columnar.html#

https://arrow.apache.org/docs/format/Columnar.html

Apache Arrow

For example a primitive array of int32s:

[1, null, 2, 4, 8]

Would look something like:

* Length: 5, Null count: 1

* Validity bitmap buffer:

|Byte 0 (validity bitmap) | Bytes 1-63 |

|-------------------------|-----------------------|

| 00011101 | 0 (padding) |

* Value Buffer:

|Bytes 0-3 | Bytes 4-7 | Bytes 8-11 | Bytes 12-15 | Bytes 16-19 | Bytes 20-63 |

|------------|-------------|-------------|-------------|-------------|-------------|

| 1 | unspecified | 2 | 4 | 8 | unspecified |

metadata/header

data vector

https://arrow.apache.org/docs/format/Columnar.html#

https://arrow.apache.org/docs/format/Columnar.html

Apache Arrow

For example a primitive array of int32s:

[1, null, 2, 4, 8]

Would look something like:

* Length: 5, Null count: 1

* Validity bitmap buffer:

|Byte 0 (validity bitmap) | Bytes 1-63 |

|-------------------------|-----------------------|

| 00011101 | 0 (padding) |

* Value Buffer:

|Bytes 0-3 | Bytes 4-7 | Bytes 8-11 | Bytes 12-15 | Bytes 16-19 | Bytes 20-63 |

|------------|-------------|-------------|-------------|-------------|-------------|

| 1 | unspecified | 2 | 4 | 8 | unspecified |

metadata/header

data vector

“The recommendation for 64 byte alignment comes from
the Intel performance guide that recommends alignment of
memory to match SIMD register width. The specific padding
length was chosen because it matches the largest SIMD
instruction registers available on widely deployed x86
architecture (Intel AVX-512).”

https://arrow.apache.org/docs/format/Columnar.html#

https://software.intel.com/en-us/articles/practical-intel-avx-optimization-on-2nd-generation-intel-core-processors
https://arrow.apache.org/docs/format/Columnar.html

kdb+

• The kdb data format is very similar, it stores data as columns and includes the types you might expect

q)l:1 0N 2 4 8i / simple int32 vector

q)0 1 4 8 9 10 cut 14#-8!l
,0x01
0x000000
0x22000000
,0x06
,0x00
0x05000000

q)0N 8#14_-8!l
0x01000000
0x00000080
0x02000000
0x04000000
0x08000000

https://code.kx.com/q/kb/serialization/

https://code.kx.com/q/kb/serialization/

• The kdb data format is very similar, it stores data as columns and includes the types you might expect

q)l:1 0N 2 4 8i / simple int32 vector

q)0 1 4 8 9 10 cut 14#-8!l
,0x01 / little endian
0x000000
0x22000000 / message length
,0x06 / type
,0x00 / attributes
0x05000000 / vector length

q)0N 8#14_-8!l
0x01000000 / 1
0x00000080 / null
0x02000000 / 2
0x04000000 / 4
0x08000000 / 8

https://code.kx.com/q/kb/serialization/

metadata/header

kdb+

https://code.kx.com/q/kb/serialization/

• The kdb data format is very similar, it stores data as columns and includes the types you might expect

q)l:1 0N 2 4 8i / simple int32 vector

q)0 1 4 8 9 10 cut 14#-8!l
,0x01 / little endian
0x000000
0x22000000 / message length
,0x06 / type
,0x00 / attributes
0x05000000 / vector length

q)0N 8#14_-8!l
0x01000000 / 1
0x00000080 / null
0x02000000 / 2
0x04000000 / 4
0x08000000 / 8

https://code.kx.com/q/kb/serialization/

metadata/header

data vector

kdb+

https://code.kx.com/q/kb/serialization/

Arrow <-> kdb

meta

data

Arrow <-> kdb

meta

data

meta

data

meta

data

meta

data

meta

data

Arrow <-> kdb

meta

data

meta

data

meta

data

meta

data

meta

data
Arrow this is a struct

Kdb+ this is a table

Arrow <-> kdb

• Broadly similar:
• Types

• General structure

• General philosophy that serialization format == in-memory format. Zero
copy! (kx had this insight several decades ago)

• Except:
• Arrow doesn’t splay

• Arrow batches records into buffers

• Null handling and some other minor differences in meta data

Arrow <-> kdb

So the data formats are fairly similar, but the structure of the projects are quite
different

• Arrow:
• Format and implementations in a

bunch of languages

• Tools to read into and out of arrow

• A few other bits and pieces (arrow
flight RPC, plasma in-memory store,
gandiva expression optimizer)

• Main points are columns and zero-
copy

• KDB:
• Format (in memory and on disk)

• Full database engine (q-SQL) and
programming language

Arrow <-> kdb

ARROW

Data format

???

KDB+

Data format

Database engine, query
language etc.

Vaex

• Stands for Visualize and explore

• Vaex uses memory mapping on top of arrow files, a zero memory
copy policy, and lazy computations

• And provides an API that looks like pandas

• Just released version 4.0 two days ago!

Vaex, Arrow and kdb+

ARROW

Data format

Vaex

KDB+

Data format

Database engine, query
language etc.

Vaex is not the only thing that can be slotted in here,
we’ll come back to that later…

Vaex, Arrow and kdb+

ARROW

Arrow data on disk

Vaex

KDB+

kdb+ data on disk

Kdb+ hdb process

memory mapping memory mapping
zero-copy

magic!

Vaex, Arrow and kdb+

• Let’s have a look at a side by side demo

• a single day of NYSE TAQ (all the trades and quotes for securities
listed on US regulated exchanges)

• Full details at https://www.aquaq.co.uk/q/comparing-columnar-data-
formats-arrow-vaex-and-kdb/

• Xeon Gold, 128GB, HDD

https://www.aquaq.co.uk/q/comparing-columnar-data-formats-arrow-vaex-and-kdb/

Vaex, Arrow and kdb+ - data on disk
vaex/arrow kdb+

Vaex, Arrow and kdb+ - data on disk
vaex/arrow kdb+

• We aren’t using dictionaries with arrow here (size difference)
• One file vs. splay
• “p” attribute on Symbol for kdb+

Vaex, Arrow and kdb+ - loading data
vaex/arrow kdb+

Vaex, Arrow and kdb+ - loading data
vaex/arrow kdb+

• In both cases this is very fast (zero-copy, memory mapping magic)

Vaex, Arrow and kdb+ - querying data (filter)
vaex/arrow kdb+

Vaex, Arrow and kdb+ - querying data (filter)
vaex/arrow kdb+

• In both cases this is similarly fast. We’re able to scan and filter, reading only the columns and part of columns
we need

Vaex, Arrow and kdb+ - querying data (group)
vaex/arrow kdb+

Vaex, Arrow and kdb+ - querying data (group)
vaex/arrow kdb+

• Again performance is relatively similar

Vaex, Arrow and kdb+ - querying data
vaex/arrow kdb+

• Comes with some other nice stuff out of the box

Comparison and possibilities

• Like any benchmark this should be taken with a pinch of salt

• So headline takeaway -> Vaex/arrow is closer to kdb+ hdb than
you might think.

• Kdb+ is ~30 years old at this point so it’s obviously much more
mature

• However the fundamental advantages of columnar storage and
zero-copy are the same, so this gap will probably continue to
close

Comparison and possibilities

Vaex/Arrow is closer than you might think

• Shortcomings:
• Dictionaries/enums not fully

supported yet

• Possibilities/advantages:

worth noting that in the
comparisons vaex was using
strings, while kdb+ used enums

Comparison and possibilities

Vaex/Arrow is closer than you might think

• Shortcomings:
• Dictionaries/enums not fully

supported yet

• Partitioning support not great yet

• Possibilities/advantages:

dataset_name/
year=2007/

month=01/
data0.parquet
data1.parquet
...

month=02/
data0.parquet
data1.parquet
...

month=03/
...

year=2008/
month=01/
...

Only fully supports Parquet
partitioning for now e.g.

Comparison and possibilities

Vaex/Arrow is closer than you might think

• Shortcomings:
• Dictionaries/enums not fully

supported yet

• Partitioning support not great yet

• Compression (incoming AquaQ
blog by Michael Turkington on this
topic!)

• Possibilities/advantages:

Comparison and possibilities

Vaex/Arrow is closer than you might think

• Shortcomings:
• Dictionaries/enums not fully

supported yet

• Partitioning support not great yet

• Compression
https://github.com/vaexio/vaex/pull/1078

• Possibilities/advantages:

https://github.com/vaexio/vaex/pull/1078

Comparison and possibilities

Vaex/Arrow is closer than you might think

• Shortcomings:
• Dictionaries/enums not fully

supported yet

• Partitioning support not great yet

• Compression

• Lack of maturity (in comparison to
kdb+)

• Possibilities/advantages:

Comparison and possibilities

Vaex/Arrow is closer than you might think

• Shortcomings:
• Dictionaries/enums not fully

supported yet

• Partitioning support not great yet

• Compression

• Lack of maturity (in comparison to
kdb+)

• Possibilities/advantages:
• The API looks like pandas

• kdb – 1,760 questions
• pandas – 192,362 questions

Comparison and possibilities

Vaex/Arrow is closer than you might think

• Shortcomings:
• Dictionaries/enums not fully

supported yet

• Partitioning support not great yet

• Compression

• Lack of maturity (in comparison to
kdb+)

• Possibilities/advantages:
• The API looks like pandas

• Open and free! (Apache 2.0 and
MIT licence) Let’s talk about this
one a little more…

Comparison and possibilities

ARROW

Arrow data on disk

Vaex

KDB+

kdb+ data on disk

Kdb+ hdb process

memory mapping memory mapping

Comparison and possibilities

ARROW

Arrow data on disk

Vaex

KDB+

kdb+ data on disk

Kdb+ hdb process

memory mapping memory mapping

API API

Comparison and possibilities

ARROW

Arrow data on disk

Vaex

memory mapping

API

Comparison and possibilities

ARROW

Arrow data on disk

Vaex

memory mapping

vaex does not have to
be the gatekeeper!

API

Comparison and possibilities

ARROW

Arrow data on disk

Vaex

memory mapping

vaex does not have to
be the gatekeeper!

API

Comparison and possibilities

ARROW

Arrow data on disk

Vaex

memory mapping

pandas spark

API

Comparison and possibilities

ARROW

Arrow data on disk

Vaex pandas kdb+ ?

API

memory mapping

Comparison and possibilities

ARROW

Arrow data on disk

Vaex

memory mapping

pandas spark

But wait, isn’t arrow an in-memory format?

Here (and in kdb+) we’re really using disk and
memory mapping as a way to share memory
locally

But doesn’t that mean it’s slow?

API

Comparison and possibilities

ARROW

Arrow data on disk

Vaex

memory mapping

pandas spark

But wait, isn’t arrow an in-memory format?

Here (and in kdb+) we’re really using disk and
memory mapping as a way to share memory
locally

But doesn’t that mean it’s slow?

API

Comparison and possibilities

ARROW

Arrow data on disk

Vaex

memory mapping

pandas spark

$ ls data/
…
2021.02.23
2021.02.24
2021.02.25
2021.02.26
2021.02.27
2021.02.28
2021.03.01
2021.03.02
2021.03.03
2021.03.04
2021.03.05
2021.03.06
2021.03.07
2021.03.08
2021.03.09
2021.03.10
2021.03.11

API

Comparison and possibilities

ARROW

Arrow data on disk

Vaex

memory mapping

pandas spark

$ ls data/
…
2021.02.23
2021.02.24
2021.02.25
2021.02.26
2021.02.27
2021.02.28
2021.03.01
2021.03.02
2021.03.03
2021.03.04
2021.03.05
2021.03.06
2021.03.07
2021.03.08
2021.03.09
2021.03.10
2021.03.11

├── quote
├── trade
└── etc.

API

Comparison and possibilities

ARROW

Arrow data on disk

Vaex

memory mapping

pandas spark

$ ls data/
…
2021.02.23
2021.02.24
2021.02.25
2021.02.26
2021.02.27
2021.02.28
2021.03.01
2021.03.02
2021.03.03
2021.03.04
2021.03.05
2021.03.06
2021.03.07
2021.03.08
2021.03.09
2021.03.10
2021.03.11 (RAMdisk)

API

Comparison and possibilities

ARROW

Arrow data on disk

Vaex

memory mapping

pandas spark

API

The Amazon API Mandate (2002)

1) All teams will henceforth expose their data and functionality through
service interfaces.

2) Teams must communicate with each other through these interfaces.

3) There will be no other form of interprocess communication allowed: no
direct linking, no direct reads of another team’s data store, no shared-
memory model, no back-doors whatsoever. The only communication
allowed is via service interface calls over the network.

4) It doesn’t matter what technology is used. HTTP, Corba, Pubsub, custom
protocols — doesn’t matter.

5) All service interfaces, without exception, must be designed from the
ground up to be externalizable. That is to say, the team must plan and
design to be able to expose the interface to developers in the outside
world. No exceptions.

6) Anyone who doesn’t do this will be fired.

— JEFF BEZOS

Comparison and possibilities

ARROW

Vaex

memory mapping

pandas spark

“Data Lake” architecture rather than a
database

Processes to create/manage these files,
separate from users

This is just one suggestion, other architectures
are available…

API

Arrow data on disk

Takeaways

• Vaex and arrow combo is pretty nice:
• Obviously doesn’t match 30 years of KDB maturity, but it’s closer than

you might think

• Performance difference measured in factors, rather than orders of
magnitude

• Open nature and zero-serialization creates possibilities!

• Questions?

